Loading...

WHAT IS STEALTH TECHNOLOGY AND HOW ITS WORK IN VEHICLES, SHIPS AND JETS WITH FULL DETAILS


Stealth technology also termed LO technology (low observable technology) is a sub-discipline of military tactics and passive electronic countermeasures, which cover a range of techniques used with personnel, aircraft, ships, submarines, missiles and satellites to make them less visible (ideally invisible) to radar, infrared,sonar and other detection methods. It corresponds to military camouflage for these parts of the electromagnetic spectrum (Multi-spectral camouflage). Development of modern stealth technologies in the United States began in 1958, where earlier attempts in preventing radar tracking of its U-2 spy planes during the Cold War by the Soviet Union had been unsuccessful.Designers turned to develop a particular shape for planes that tended to reduce detection, by redirecting electromagnetic waves from radars. Radar-absorbent material was also tested and made to reduce or block radar signals that reflect off from the surface of planes. Such changes to shape and surface composition form stealth technology as currently used on the Northrop Grumman B-2 Spirit "Stealth Bomber". The concept of stealth is to operate or hide without giving enemy forces any indications as to the presence of friendly forces. This concept was first explored through camouflage by blending into the background visual clutter. As the potency of detection and interception technologies (radar, Infra-red search and track, surface-to-air missiles, etc.) have increased over time, so too has the extent to which the design and operation of military personnel and vehicles have been affected in response. Some military uniforms are treated with chemicals to reduce their infrared signature. A modern "stealth" vehicle is designed from the outset to have a chosen spectral signature. The degree of stealth embodied in a particular design is chosen according to the predicted capabilities of projected threats. Radar cross-section (RCS) reductions Main article: Radar cross-section Almost since the invention of radar, various methods have been tried to minimize detection. Rapid development of radar during World War II led to equally rapid development of numerous counter radar measures during the period; a notable example of this was the use of chaff. Modern methods include Radar jamming and deception. The term "stealth" in reference to reduced radar signature aircraft became popular during the late eighties when the Lockheed Martin F-117 stealth fighter became widely known. The first large scale (and public) use of the F-117 was during the Gulf War in 1991. However, F-117A stealth fighters were used for the first time in combat during Operation Just Cause, the United States invasion of Panama in 1989. Increased awareness of stealth vehicles and the technologies behind them is prompting the development of means to detect stealth vehicles, such as passive radar arrays and low-frequency radars. Many countries nevertheless continue to develop low-RCS vehicles because they offer advantages in detection range reduction and amplify the effectiveness of on-board systems against active radar homing threats. Vehicle shape Aircraft The possibility of designing aircraft in such a manner as to reduce their radar cross-section was recognized in the late 1930s, when the first radar tracking systems were employed, and it has been known since at least the 1960s that aircraft shape makes a significant difference in detectability. The Avro Vulcan, a British bomber of the 1960s, had a remarkably small appearance on radar despite its large size, and occasionally disappeared from radar screens entirely. It is now known that it had a fortuitously stealthy shape apart from the vertical element of the tail. Despite being designed before a low radar cross-section (RCS) and other stealth factors were ever a consideration, a Royal Aircraft Establishment technical note of 1957 stated that of all the aircraft so far studied, the Vulcan appeared by far the simplest radar echoing object, due to its shape: only one or two components contributing significantly to the echo at any aspect, compared with three or more on most other types. While writing about radar systems, authors Simon Kingsley and Shaun Quegan singled out the Vulcan's shape as acting to reduce the RCS. In contrast, the Tupolev 95 Russian long-range bomber (NATO reporting name 'Bear') was conspicuous on radar. It is now known that propellers and jet turbine blades produce a bright radar image; the Bear has four pairs of large (5.6 meter diameter) contra-rotating propellers. Another important factor is internal construction. Some stealth aircraft have skin that is radar transparent or absorbing, behind which are structures termed re-entrant triangles. Radar waves penetrating the skin get trapped in these structures, reflecting off the internal faces and losing energy. This method was first used on the Blackbird series (A-12/YF-12A/Lockheed SR-71 Blackbird). The most efficient way to reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral (two plates) or a trihedral (three orthogonal plates). This configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. Stealth aircraft such as the F-117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. A more radical method is to eliminate the tail completely, as in the B-2 Spirit. The B-2's clean, low-drag flying wing configuration not only gives it exceptional range but also reduces its radar profile.The flying wing design most closely resembles a so-called infinite flat plate (as vertical control surfaces dramatically increase RCS), the perfect stealth shape, as it would have no angles to reflect back radar waves. In addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. A stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. Any stealthy vehicle becomes un-stealthy when a door or hatch opens. Parallel alignment of edges or even surfaces is also often used in stealth designs. The technique involves using a small number of edge orientations in the shape of the structure. For example, on the F-22A Raptor, the leading edges of the wing and the tail planes are set at the same angle. Other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. The effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. The effect is sometimes called "glitter" after the very brief signal seen when the reflected beam passes across a detector. It can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. Stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. The YF-23 has such serrations on the exhaust ports. This is another example in the parallel alignment of features, this time on the external airframe. Shaping requirements detract greatly from an aircraft's aerodynamic properties. The F-117 has poor aerodynamics, is inherently unstable, and cannot be flown without a fly-by-wire control system. Similarly, coating the cockpit canopy with a thin film transparent conductor (vapor-deposited gold or indium tin oxide) helps to reduce the aircraft's radar profile, because radar waves would normally enter the cockpit, reflect off objects (the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. The coating is thin enough that it has no adverse effect on pilot vision. Ships Ships have also adopted similar methods. Though the earlier Arleigh Burke-class destroyer incorporated some signature-reduction features. the Skjold-class corvette was the first coastal defence and the French La Fayette-class frigate the first ocean-going stealth ship to enter service. Other examples are the Taiwanese Tuo Chiang stealth corvette, German Sachsen-class frigates, the Swedish Visby-class corvette, the USS San Antonio amphibious transport dock, and most modern warship designs. Materials Non-metallic airframe Dielectric composites are more transparent to radar, whereas electrically conductive materials such as metals and carbon fibers reflect electromagnetic energy incident on the material's surface. Composites may also contain ferrites to optimize the dielectric and magnetic properties of a material for its application. Radar-absorbing material Radar-absorbent material (RAM), often as paints, are used especially on the edges of metal surfaces. While the material and thickness of RAM coatings can vary, the way they work is the same: absorb radiated energy from a ground or air based radar station into the coating and convert it to heat rather than reflect it back. Current technologies include dielectric composites and metal fibers containing ferrite isotopes. Paint comprises depositing pyramid like colonies on the reflecting superficies with the gaps filled with ferrite-based RAM. The pyramidal structure deflects the incident radar energy in the maze of RAM. A commonly used material is known as "Iron Ball Paint‟. Iron ball paint contains microscopic iron spheres that resonate in tune with incoming radio waves and dissipate the majority of their energy as heat, leaving little to bounce back to detectors. FSS are planar periodic structures that behave like filters to electromagnetic energy. The considered frequency selective surfaces are composed of conducting patch elements pasted on the ferrite layer. FSS are used for filtration and microwave absorption.
B2 STEALTH BOMBER SKIN Radar stealth countermeasures and limits Low-frequency radar Shaping offers far fewer stealth advantages against low-frequency radar. If the radar wavelength is roughly twice the size of the target, a half-wave resonance effect can still generate a significant return. However, low-frequency radar is limited by lack of available frequencies (many are heavily used by other systems), by lack of accuracy of the diffraction-limited systems given their long wavelengths, and by the radar's size, making it difficult to transport. A long-wave radar may detect a target and roughly locate it, but not provide enough information to identify it, target it with weapons, or even to guide a fighter to it. Noise poses another problem, but that can be efficiently addressed using modern computer technology; Chinese "Nantsin" radar and many older Soviet-made long-range radars have been modified by supporting them with modern computers. Multiple emitters Much of the stealth comes in directions different than a direct return. Thus, detection can be better achieved if emitters are separate from receivers. One emitter separate from one receiver is termed bistatic radar; one or more emitters separate from more than one receiver is termed multistatic radar. Proposals exist to use reflections from emitters such as civilian radio transmitters, including cellular telephone radio towers. Moore's law By Moore's law the processing power behind radar systems is rising over time. This will erode the ability of physical stealth to hide vehicles. Ship's wakes and spray Synthetic Aperture sidescan radars can be used to detect the location and heading of ships from their wake patterns. These may be detectable from orbit. When a ship moves through a seaway it throws up a cloud of spray which can be detected by radar. Schlieren signature Anything that disturbs the atmosphere may be detected (Schlieren photography) because of the Schlieren effect caused by that atmospheric disturbance. This type of Measurement and signature intelligence detection falls under the category of Electro-optical MASINT. Acoustics See also: Acoustic signature, Aircraft noise, and Helicopter noise reduction Acoustic stealth plays a primary role in submarine stealth as well as for ground vehicles. Submarines use extensive rubber mountings to isolate and avoid mechanical noises that could reveal locations to underwater passive sonar arrays. Early stealth observation aircraft used slow-turning propellers to avoid being heard by enemy troops below. Stealth aircraft that stay subsonic can avoid being tracked by sonic boom. The presence of supersonic and jet-powered stealth aircraft such as the SR-71 Blackbird indicates that acoustic signature is not always a major driver in aircraft design, as the Blackbird relied more on its extremely high speed and altitude. One possible technique for reducing helicopter rotor noise is 'modulated blade spacing'. Standard rotor blades are evenly spaced, and produce greater noise at a particular frequency and its harmonics. Using varying degrees of spacing between the blades spreads the noise or acoustic signature of the rotor over a greater range of frequencies. Visibility Further information: Military camouflage, Active camouflage, Aircraft camouflage, and Ship camouflage The simplest technology is visual camouflage; the use of paint or other materials to color and break up the lines of the vehicle or person. Most stealth aircraft use matte paint and dark colors, and operate only at night. Lately, interest in daylight Stealth (especially by the USAF) has emphasized the use of gray paint in disruptive schemes, and it is assumed that Yehudi lights could be used in the future to hide the airframe (against the background of the sky, including at night, aircraft of any colour appear dark) or as a sort of active camouflage. The original B-2 design had wing tanks for a contrail-inhibiting chemical, alleged by some to be chlorofluorosulfonic acid, but this was replaced in the final design with a contrail sensor that alerts the pilot when he should change altitude and mission planning also considers altitudes where the probability of their formation is minimized. In space, mirrored surfaces can be employed to reflect views of empty space toward known or suspected observers; this approach is compatible with several radar stealth schemes. Careful control of the orientation of the satellite relative to the observers is essential, and mistakes can lead to detectability enhancement rather than the desired reduction. Infrared Main article: infrared signature See also: Infrared countermeasure An exhaust plume contributes a significant infrared signature. One means to reduce IR signature is to have a non-circular tail pipe (a slit shape) to minimize the exhaust cross sectional area and maximize the mixing of hot exhaust with cool ambient air (see Lockheed F-117 Nighthawk). Often, cool air is deliberately injected into the exhaust flow to boost this process (see Ryan AQM-91 Firefly and Northrop Grumman B-2 Spirit). According to the Stefan–Boltzmann law, this results in less energy (Thermal radiation in infrared spectrum) being released and thus reduces the heat signature. Sometimes, the jet exhaust is vented above the wing surface to shield it from observers below, as in the Lockheed F-117 Nighthawk, and the unstealthy Fairchild Republic A-10 Thunderbolt II. To achieve infrared stealth, the exhaust gas is cooled to the temperatures where the brightest wavelengths it radiates are absorbed by atmospheric carbon dioxide and water vapor, dramatically reducing the infrared visibility of the exhaust plume.Another way to reduce the exhaust temperature is to circulate coolant fluids such as fuel inside the exhaust pipe, where the fuel tanks serve as heat sinks cooled by the flow of air along the wings. Ground combat includes the use of both active and passive infrared sensors and so the USMC ground combat uniform requirements document specifies infrared reflective quality standards.
stealth technology 7121787523312854444

Post a Comment

emo-but-icon

Home item

Popular Posts

Random Posts

Flickr Photo